
Advice, Hints, and General Information from the NWERC Jury

Advice, Hints, and General Information from the
NWERC Jury

• Your submissions will be run multiple times, on different input files. The
order in which the input files are being used is fixed and does not change
from one submission to another.

If your submission is incorrect, the error message you get will be the error
that occurred on the first input file on which you failed. E.g. if your
submission is prone to crash but also incorrect, your submission may be
judged as either “Wrong Answer” or “Run Time Error”, depending on
which is discovered first.

• Your submission will have exactly one processor core fully at its disposal
while running. You should not attempt to use multithreading in your
submissions. Attempts to start extra processes or threads may lead to a
judgement of “Run Time Error”.

• After receiving the judgement of your submission, you are able to view the
output of your submission and the corresponding verdict of each of the
samples in the DOMjudge interface.

• Each problem will have a stated time limit. This time limit is per input
file and refers to CPU time, which includes time spent on slow parsing
(e.g. using Scanner in Java).

• All judging machines are physically identical to the desktop PCs provided
to you during the contest.

• The memory limit is the same for all problems and is 2048 MB.

• For problems with large I/O, it is in your best interest to use buffered input
and output in Java. We have tried to make sure that the I/O-intensive
problems are solvable using even slow I/O. But for some problems, it can
be more difficult to get accepted using e.g. the Scanner class, since it
consumes a significant amount of valuable CPU time that could otherwise
be used by your algorithm. In most cases, a BufferedReader will be
more efficient. Also consider explicit output buffering (e.g. by using the
BufferedWriter class) to avoid flushing every line of output separately.

• We guarantee that every problem is solvable in C++, Python 3, Java, and
Kotlin.

Problem Statements
We generally try to make the input and output formats as easy as possible to
follow for you as contestants – input and output are meant to be the easiest
parts of the problems!

• For input, multiple numbers or words on one input line will be separated
by single spaces. There are no additional spaces, tabs or newlines.

1



• For output, unless explicitly stated in the problem statement, we do not
require you to output exactly the right number of spaces and newlines.
Errors in whitespace within reason will be accepted, but if all whitespace
between two tokens is omitted, that is (of course) an error.

• For problems with real-valued output, we generally only require that your
output is correct up to a certain absolute or relative error. In the case
that both are specified, the largest of the two applies. For example, if the
problem statement requests an “absolute or relative error of at most 10−6”,
this means that:

– If the correct answer is 0.005, any answer between 0.004999 and
0.005001 will be accepted. The absolute error of ±10−6 is larger than
the relative error of ±5 · 10−9 (= 0.005 · 10−6).

– If the correct answer is 5000, any answer between 4999.995 and
5000.005 will be accepted. The relative error of ±0.005 (= 5000 ·10−6)
is larger than the absolute error of ±10−6.

• For problems with real-valued output, any reasonable format for floating
point numbers is acceptable. For instance, 17.000000, 0.17e2, and 17
are all acceptable ways of formatting the number 17. For the definition of
reasonable, please use your common sense.

• Some problems will state: “If there are multiple valid solutions, you
may output any one of them.” It may be the case that, on the public
sample inputs, your submission provides a different correct output than
the corresponding sample output. In that case, you should manually check
whether your output conforms to the given output constraints.

Interactive Problems
• The contest typically includes interactive problems. Each interactive

problem is accompanied by a Python script to help with testing your
solutions locally. The tool attempts to detect and report common errors,
but it is not guaranteed that a program that passes the testing tool will
be accepted. The tool can be found in the Kattis or DOMjudge interface,
in the panel below the statement of the corresponding problem, named
testing_tool.py. The source code of the tool contains instructions on
its use. You will be able to test this during the practice session.

• In solutions to interactive problems, make sure to flush after every write
to standard output. Failing to do so may result in the interactor waiting
for input indefinitely, and your solution being judged as “Time Limit
Exceeded”.

• Verdicts for incorrect submissions to interactive problems may not be
deterministic. We can guarantee the following: a verdict of “Wrong Answer”
means that your submission printed something wrong, and a verdict of
“Run Time Error” means that your submission returned a non-zero exit
code. If your submission does both, you may get either verdict.

2


	Advice, Hints, and General Information from the NWERC Jury
	Problem Statements
	Interactive Problems


